|
MARLEY (Model of Argon Reaction Low Energy Yields)
v1.2.0
A Monte Carlo event generator for tens-of-MeV neutrino interactions
|
Implements Brink-Axel strength functions based on the Reference Input Parameter Library's Standard Lorentzian (SLO) Model. More...
#include <StandardLorentzianModel.hh>
Public Member Functions | |
| StandardLorentzianModel (int Z, int A) | |
| virtual double | strength_function (TransitionType type, int l, double e_gamma) override |
| Returns the gamma-ray strength function (MeV –2 \(\ell\)–1) for the requested gamma energy and multipolarity. More... | |
| virtual double | transmission_coefficient (TransitionType type, int l, double e_gamma) override |
| Returns the gamma-ray transmission coefficient (dimensionless) for the requested gamma energy and multipolarity. More... | |
Public Member Functions inherited from marley::GammaStrengthFunctionModel | |
| GammaStrengthFunctionModel (int Z, int A) | |
Additional Inherited Members | |
Public Types inherited from marley::GammaStrengthFunctionModel | |
| enum class | TransitionType { electric , magnetic , unphysical } |
| Electromagnetic transitions in nuclei may be classified by their multipolarity (electric vs. magnetic multipole radiation) | |
Static Protected Member Functions inherited from marley::GammaStrengthFunctionModel | |
| static void | check_multipolarity (int l) |
| Check that l > 0 and throw a marley::Error if it is not. More... | |
Protected Attributes inherited from marley::GammaStrengthFunctionModel | |
| int | A_ |
| Mass number. | |
| int | Z_ |
| Atomic number. | |
Implements Brink-Axel strength functions based on the Reference Input Parameter Library's Standard Lorentzian (SLO) Model.
Under this model, the gamma-ray strength functions are taken to have a Lorentzian shape with an energy-independent width. If \(E_{\text{X}\ell}\), \(\Gamma_{\text{X}\ell}\), and \(\sigma_{\text{X}\ell}\) are respectively the energy, width, and peak cross section of the \(\text{X}\ell\) giant resonance, then the standard Lorentzian model gamma-ray strength function is given by
\[ f_{\text{X}\ell}(E_\gamma) = \frac{\sigma_{\text{X}\ell}} {(2\ell+1)\pi^2(\hbar c)^2}\left[\frac{\Gamma_{\text{X}\ell}^2 E_\gamma^{3-2\ell}}{\left(E_\gamma^2 - E_{\text{X}\ell}^2\right)^2 + E_\gamma^2\Gamma_{\text{X}\ell}^2}\right] \]
where \(E_\gamma\) is the gamma-ray energy and the type of transition \(\text{X}\) is either electric \(\text{(E)}\) or magnetic \(\text{(M)}\).
The giant resonance parameters \(E_{\text{X}\ell}\), \(\Gamma_{\text{X}\ell}\), and \(\sigma_{\text{X}\ell}\) used by StandardLorentzianModel are the same as those used by default in the TALYS nuclear reaction code, version 1.6. More details about these parameters are given in the table below.
| Transition | Parameters | Units | Source |
|---|---|---|---|
| Electric dipole (E1) | \(E_{\text{E}1} = 31.2A^{-1/3} + 20.6A^{-1/6}\) | MeV | Empirical fit for spherical nuclei from the RIPL-2 handbook, p. 129 |
| \(\Gamma_{\text{E}1} = 0.026{E_{\text{E}1}}^{1.91}\) | MeV | ||
| \(\displaystyle\sigma_{\text{E}1} = 1.2\left(\frac{120NZ}{\pi A \,\Gamma_{\text{E}1}}\right)\) | mb | ||
| Electric quadrupole (E2) | \(E_{\text{E}2} = 63A^{-1/3}\) | MeV | Global fit given by Kopecky in the RIPL-1 handbook, p. 103 |
| \(\Gamma_{\text{E}2} = 6.11 - 0.012A\) | MeV | ||
| \(\displaystyle\sigma_{\text{E}2} = \frac{0.00014Z^2 E_{\text{E}2}}{A^{1/3}\Gamma_{\text{E}2}}\) | mb | ||
| Magnetic dipole (M1) | \(E_{\text{M}1} = 41A^{-1/3}\) | MeV | Global SLO model fit given in the RIPL-2 handbook, p. 132 |
| \(\Gamma_{\text{M}1} = 4\) | MeV | ||
|
\(\displaystyle\sigma_{\text{M}1} = 3\,\pi^2\hbar^2c^2\left[\frac{\left(B_\text{n}^2 - E_{\text{M}1}^2\right)^2 + B_\text{n}^2\, \Gamma_{\text{M}1}^2}{B_\text{n}\,\Gamma_{\text{M}1}^2} \right]\Bigg[\frac{f_{\text{E}1}(B_\text{n})}{0.0588A^{0.878}}\Bigg] \) where \(B_\text{n}\) = 7 MeV and \(f_{\text{E}1}\) is calculated using the E1 parameters above. | mb | ||
| Other electric transitions (E3+) | \(E_{\text{E}\ell} = E_{\text{E}2}\) | MeV | Default approximation used by the TALYS nuclear code, version 1.6 |
| \(\Gamma_{\text{E}\ell} = \Gamma_{\text{E}2}\) | MeV | ||
|
\(\displaystyle\sigma_{\text{E}\ell} = (0.0008)^{\ell - 2}\,\sigma_{\text{E}2}\) | mb | ||
| Other magnetic transitions (M2+) | \(M_{\text{M}\ell} = M_{\text{M}1}\) | MeV | Default approximation used by the TALYS nuclear code, version 1.6 |
| \(\Gamma_{\text{M}\ell} = \Gamma_{\text{M}1}\) | MeV | ||
|
\(\displaystyle\sigma_{\text{M}\ell} = (0.0008)^{\ell - 1}\,\sigma_{\text{M}1}\) | mb |
| marley::StandardLorentzianModel::StandardLorentzianModel | ( | int | Z, |
| int | A | ||
| ) |
|
overridevirtual |
Returns the gamma-ray strength function (MeV –2 \(\ell\)–1) for the requested gamma energy and multipolarity.
| type | Electric or magnetic transition |
| l | Multipolarity of the transition |
| e_gamma | Gamma-ray energy (MeV) |
Implements marley::GammaStrengthFunctionModel.
|
overridevirtual |
Returns the gamma-ray transmission coefficient (dimensionless) for the requested gamma energy and multipolarity.
The gamma-ray transmission coefficient and strength function are related via \(\text{T}_{\text{X}\ell}(\text{E}_\gamma) = 2\pi f_{\text{X}\ell}(\text{E}_\gamma)\text{E}_\gamma^{(2\ell + 1)},\) where X is the type of transition (electric or magnetic), \(\ell\) is the multipolarity, \(\text{T}_{\text{X}\ell}\) is the transmission coefficient, \(f_{\text{X}\ell}\) is the strength function, and \(\text{E}_\gamma\) is the gamma-ray energy.
| type | Electric or magnetic transition |
| l | Multipolarity of the transition |
| e_gamma | Gamma-ray energy (MeV) |
Implements marley::GammaStrengthFunctionModel.